

SHORT COMMUNICATION

CONSTITUENTS OF THE LEAVES AND THE STEMS OF *CLEMATIS VITALBA*

AYHAN ULUBELEN

Faculty of Pharmacy, University of Istanbul, Turkey

(Received 29 May 1969; in revised form 24 July 1969)

Plant. *Clematis vitalba*—Ranunculaceae.

Source. Northern parts of Anatolia—Turkey.¹

Uses. Medicinal, antitumor activity against WM test system,² a T/C of 37% was obtained at a dose of 200 mg/kg.

Previous work. On sister species, *C. angustifolia jacquin*,^{3,4} *C. terniflora*⁵ and some others.

Leaves and stems. Extracted with CHCl₃ in a soxhlet until extinction (I). The mark was extracted with 70% aqueous alcohol (II), (I) was chromatographed on a silicic acid:celite (3:1) column.

n-Triacontan. C₃₀H₆₂, m.p. 64–65°, (α)_D ± 0° (in CHCl₃). Found: C, 85.98; H, 13.81%; u.v. (no peaks), i.e. (2920, 2850, 1460, 725 and 715 cm⁻¹).

n-Nonacosan. C₂₉H₆₀, m.p. 63°, (α)_D ± 0° (in CHCl₃). Found: C, 85.17; H, 14.49%; u.v. (no peaks), i.r. characteristic bands.

Ginnon. C₂₉H₅₈O, m.p. 74–74.5°, (α)_D ± 0° (in CHCl₃). Found: C, 82.37; H, 13.89%; u.v. (no peaks), i.r. (2950, 2850, 1740, 1460, 1170, 730 and 718 cm⁻¹).

Ginnol. C₂₉H₆₀O, m.p. 79–80°, (α)_D ± 0° (in CHCl₃). Found: C, 82.56; H, 14.35%; u.v. (no peaks), i.r. (3350, 2900, 1460, 1370, 1055, 725 and 718 cm⁻¹). *N*-Bromosuccinimide test (6) showed a primary alcohol.

“*γ-Sitosterol.*” C₂₉H₅₀O, m.p. 147–148°, (α)_D – 43° (in CHCl₃). Found: C, 83.85; H, 11.96%; u.v. a shoulder at 205 nm, i.r. characteristic bands of a steroid alcohol. Melting point of acetyl derivative 140° (lit. 139–141), benzoyl derivative 146° (lit. 147–149).^{7,8} NMR bands between 0.7–1.7 ppm methylene and methyl bands, 3.5 ppm CH—O, 5.1 ppm and 5.4 ppm HC— bands, integration showed 50 protons. Hydrogenation suggested one double band. According to Thompson *et al.*,⁹ “*γ*-sitosterol” is now known to be a mixture of *β*-sitosterol and campesterol.

¹ P. H. DAVIS, *Flora of Turkey*, Vol. 1, p. 138, University Press, Edinburgh (1965).

² Protocols for screening chemical agents and natural products against animal tumors and other biological systems”, *Cancer Chemotherapy Rep.* No. 25 (1962).

³ T. H. TANG and Y. S. CHAO, *Arch. Pharm.* **11**, 60 (1940); *Chem. Abst.* **34**, 60133.

⁴ TENG-HAN TANG and EU-HSIANG CHAO, *Natl Shantung Univ. Chem. Lab. Rep.* No. 3–4, 19 (1934); *Chem. Abst.* **29**, 31151.

⁵ M. ARITIMO, *Chem. Pharm. Bull. (Tokyo)* **11**, (10), 1225 (1963).

⁶ P. F. KRUSE JR., K. L. GRIST and T. A. MCCOY, *Anal. Chem.* **26**, 1319 (1954).

⁷ C. DJERASSI, M. GORMAN, A. L. NUSSBAUM and J. REYNOSO, *J. Am. Chem. Soc.* **76**, 4463 (1954).

⁸ G. TAPPI and A. MONZANI, *Gazz. Chim. Ital.* **85**, 725 (1955).

⁹ M. J. THOMPSON, W. E. ROBBINS and G. L. BAKER, *Steroids* **2**, 505 (1963).

β -Sitosterol. $C_{29}H_{50}O$, m.p. 137° , $(\alpha)_D - 35^\circ$ (in $CHCl_3$). Found: C, 83.8; H, 12.75%; mixed m.p.'s and i.r. curve comparison.

(II) was chromatographed on polyamide powder.

Chlorogenic acid. $C_{16}H_{18}O_9$, m.p. $206-207^\circ$, $(\alpha)_D - 30^\circ$ (in $EtOH$), mixed m.p.'s and i.r. curve comparison.

Caffeic acid. $C_9H_8O_4$, m.p. $194-195^\circ$, $(\alpha)_D \pm 0^\circ$ (in $EtOH$), mixed m.p.'s and i.r. curve comparison.

Acknowledgements.—This investigation was supported by the Scientific and Technical Research Council of Turkey (TAK-96). The author thanks Professor Dr. A. Baytop for the identification of the plant.